| Calculus 1                                        | Name                       |                  |
|---------------------------------------------------|----------------------------|------------------|
| Review - Implicit Diff. and Related Rates (2)     | BlockDate_                 |                  |
| 1) Find the equation of the tangent line at the g | twen point. $5x^2y^3 + 5x$ | -6y = 18xy (3,1) |
| 10xy 3+5x33y20x 45-10x                            | - 18 x + 18x               | dx Y=mx+b        |
|                                                   | - 10 / 1 100               | TX \ 1 17 (1)    |
| 15-31-18-01 - 18-01                               | 10 1 2                     | 1- 75(3)         |
| 12 × 1 9× 2× 10× 12× =                            | 18y-10xy-1                 | , 'Ya            |
| dy 1,5 2 2 1 10 ) 10                              | 10 3 C                     | 6= 1/25          |
| 就(15xy-6-10x)=18                                  | y-10xy=-5                  | 17               |
| 16.2                                              | 101-163113-                | -11              |
| 24 - 184-10x4-2                                   | 18.1-10.5                  | - 75             |
| JX - 15v2 v2-6-18X                                | 15.3-1-6-                  | -143             |
| 15x y -6-10x                                      | /                          | -17 1 4          |
| •                                                 | Ň                          | = 55 X + 25      |
|                                                   | - (1                       | 10               |

2) Find the derivative of  $4x + 3x^2y^4 = 30$ .

$$4 + 6x y^{4} + 3x^{2} \cdot 4y^{3} \frac{dy}{dx} = 0$$

$$13x^{2}y^{3} \frac{dy}{dx} = -4 - 6xy^{4}$$

$$\frac{dy}{dx} = -\frac{1}{12}x^{2}y^{3}$$

$$\frac{dy}{dx} = -\frac{3}{3}x^{2}y^{4}$$

$$\frac{dy}{dx} = -\frac{3}{3}x^{2}y^{4}$$

2) Find the derivative of 
$$4x + 3x^2y^4 = 30$$
.  
3) Find the derivative of  $4\sin(3x^3y) + 5xy - 7y^4 = 35$ .

$$4\cos(3x^{3}y)\cdot(9x^{3}y+3x^{3}\frac{\partial y}{\partial x}) + 5y + 5x\frac{\partial y}{\partial x} - 36y^{3}\frac{\partial y}{\partial x} = 0$$

$$3(6x^{3}y)\cos(3x^{3}y) + 12x^{3}\cos(x^{3}y)\frac{\partial y}{\partial x} + 5y + 5x\frac{\partial y}{\partial x} - 28y^{3}\frac{\partial y}{\partial x}$$

$$12x^{3}\cos(3x^{3}y)\frac{\partial y}{\partial x} + 5x\frac{\partial y}{\partial x} - 28y^{3}\frac{\partial y}{\partial x} = -36x^{2}y\cos(3x^{2}y) - 5y$$

$$\frac{\partial y}{\partial x} \left(12x^{3}\cos(3x^{3}y) + 5x - 28y^{3}\right) = -36x^{2}y\cos(3x^{2}y) - 5y$$

$$\frac{\partial y}{\partial x} = -36x^{2}y\cos(3x^{2}y) + 5x - 28y^{3}$$

$$\frac{\partial y}{\partial x} = -36x^{2}y\cos(3x^{2}y) + 5x - 28y^{3}$$

$$\frac{\partial y}{\partial x} = -36x^{2}y\cos(3x^{2}y) + 5x - 28y^{3}$$

4) A right triangle has legs with lengths of 2.7ft and 3.6ft. The longer leg is increasing at a rate 7ft/min and the shorter side is increasing at a rate of 6.5 ft/min. How fast is the hypotenuse changing at this instant? How fast is the angle between the shorter side and the hypotenuse changing?



5) Sand is being poured at a rate of 7.6 cubic centimeters per second and is forming an conical pile. The height of the pile is always a third of the radius. Determine how fast the height is changing at the instant the height is 5 cm. Determine the rate of change of the radius at that same instant.

$$A = \frac{3}{4}(3h)^{3} \cdot P \qquad A = \frac{3}{4}c_{3}$$

$$A = \frac{3}{4}(3h)^{3} \cdot P \qquad A = \frac{3}{4}c_{3} \cdot \frac{3}{4}c_{3}$$

$$A = \frac{3}{4}c_{3} \cdot P \qquad P = \frac{3}{4}c_{3} \cdot P$$

6) A perfect cube has side length of 14 in and the sides are decreasing at a rate of .5 in per second. What is the rate of change of the volume of this cube? What is the rate of change of the surface area?

a) 
$$V = 5^{3}$$

$$\frac{dV}{dt} = 35^{3} \frac{d5}{dt}$$

$$\frac{dV}{dt} = 3.14^{3}.7.5$$

$$= -394 \text{ in}^{3}/\text{sec}$$

